INFORMATION & COMMUNICATION TECHNOLOGY
Global GPU Database Market - Industry Trends and Forecast to 2032
REPORT OVERVIEW
Global GPU Database Market, By Application (GRC, Threat Intelligence, CEM, Fraud Detection and Prevention, Predictive Maintenance, SCM, and Others), Components (Tools and Services), Deployment Model (On-Premises and Cloud), Verticals (BFSI, Retail and e-commerce, Healthcare and Pharmaceuticals, Telecommunications and IT, Transportation and Logistics, Government and Defense, and Others), Region (North America, Europe, Asia-Pacific, South America, Middle East and Africa) – Industry Trends and Forecast to 2032.
Market Insights
Market Dynamics
- Rise of data-intensive applications
- Advancements in GPU technology
- High initial costs
- Limited use cases
- Industry-specific solutions
- Focus on data security and compliance
- Performance optimization
- Scalability requirements
SEGMENTATION
- Application
- GRC
- Threat Intelligence
- CEM
- Fraud Detection and Prevention
- Predictive Maintenance
- SCM
- Others
- Components
- Tools
- GPU-Accelerated Databases
- GPU-Accelerated Analytics
- Services
- Deployment Model
- On-Premises
- Cloud
- Verticals
- BFSI
- Retail and e-commerce
- Healthcare and Pharmaceuticals
- Telecommunications and IT
- Transportation and Logistics
- Government and Defense
- Others
- North America
- U.S.
- Canada
- Mexico
- Rest of North America
- Europe
- Germany
- U.K.
- France
- Italy
- Spain
- Russia
- The Netherlands
- Belgium
- Turkey
- Rest of Europe
- Asia-Pacific
- China
- India
- Japan
- South Korea
- Singapore
- Malaysia
- Australia
- Thailand
- Philippines
- Rest of Asia-Pacific
- South America
- Brazil
- Argentina
- Chile
- Colombia
- Rest of South America
- Middle East and Africa
- Kingdom of Saudi Arabia
- South Africa
- U.A.E.
- Egypt
- Rest of Middle East and Africa
KEY MARKET PLAYERS
- Kinetica
- OmniSci
- SQream
- Neo4j
- NVIDIA
- Brytlyt
- Jedox
- Zilliz
- HeteroDB
- Graphistry
Table OF CONTENTS
- SECTION 1 - INTRODUCTION
- 1.1 Taxonomy
- 1.2 Market Overview
- 1.3 Currency and Limitations
- 1.3.1 Currency
- 1.3.2 Limitations
- 1.4 Key Competitors
- SECTION 2 - RESEARCH METHODOLOGY
- 2.1 Research Approach
- 2.2 Data Collection and Validation
- 2.2.1 Secondary Research
- 2.2.2 Primary Research
- 2.3 Market Assessment
- 2.3.1 Market Size Estimation
- 2.3.2 Bottom-up Approach
- 2.3.3 Top-down Approach
- 2.3.4 Growth Forecast
- 2.4 Market Study Assumptions
- 2.5 Data Sources
- SECTION 3 - EXECUTIVE SUMMARY
- 3.1 Global GPU Database Market, by Application
- 3.2 Global GPU Database Market, by Components
- 3.3 Global GPU Database Market, by Deployment Model
- 3.4 Global GPU Database Market, by Verticals
- 3.5 Global GPU Database Market, by Geography
- 3.6 Market Position Grid
- SECTION 4 - PREMIUM INSIGHTS
- 4.1 Regulatory Framework
- 4.1.1 Standards
- 4.1.2 Regulatory Landscape
- 4.2 Value Chain Analysis
- 4.3 Supply Chain Analysis
- 4.4 COVID-19 Impact
- 4.5 Russia-Ukraine War Impact
- 4.6 PORTER's Five Force Analysis
- 4.7 PESTLE Analysis
- 4.8 SWOT Analysis
- 4.9 Go to Market Strategy
- 4.10 Opportunity Orbit
- 4.11 Multivariate Modelling
- 4.12 Pricing Analysis
- SECTION 5 - MARKET DYNAMICS
- 5.1 Trends
- 5.1.1 Focus on real-time analytics
- 5.1.2 Emergence of hybrid architecture
- 5.1.3 Trend 3
- 5.2 Drivers
- 5.2.1 Rise of data-intensive applications
- 5.2.2 Advancements in GPU technology
- 5.2.3 Driver 3
- 5.2.4 Driver 4
- 5.3 Restraints
- 5.3.1 High initial costs
- 5.3.2 Limited use cases
- 5.3.3 Restraint 3
- 5.4 Opportunities
- 5.4.1 Industry-specific solutions
- 5.4.2 Focus on data security and compliance
- 5.4.3 Opportunity 3
- 5.4.4 Opportunity 4
- 5.5 Challenges
- 5.5.1 Performance optimization
- 5.5.2 Scalability requirements
- 5.5.3 Challenge 3
- SECTION 6 - GLOBAL GPU DATABASE MARKET, BY APPLICATION
- 6.1 Application Summary
- 6.2 Market Attractive Index
- 6.3 Global GPU Database Market, by Application (2019-2032)
- SECTION 7 - GLOBAL GPU DATABASE MARKET, BY COMPONENTS
- 7.1 Components Summary
- 7.2 Market Attractive Index
- 7.3 Global GPU Database Market, by Components (2019-2032)
- SECTION 8 - GLOBAL GPU DATABASE MARKET, BY DEPLOYMENT MODEL
- 8.1 Deployment Model Summary
- 8.2 Market Attractive Index
- 8.3 Global GPU Database Market, by Deployment Model (2019-2032)
- SECTION 9 - GLOBAL GPU DATABASE MARKET, BY VERTICALS
- 9.1 Verticals Summary
- 9.2 Market Attractive Index
- 9.3 Global GPU Database Market, by Verticals (2019-2032)
- SECTION 10 - GLOBAL GPU DATABASE MARKET, BY GEOGRAPHY
- 10.1 Regional Summary
- 10.2 Market Attractive Index
- 10.3 Global GPU Database Market, by Geography (2019-2032)
- SECTION 11 - NORTH AMERICA GPU DATABASE MARKET
- 11.1 North America Summary
- 11.2 Market Attractive Index
- 11.3 North America GPU Database Market, by Application (2019-2032)
- 11.4 North America GPU Database Market, by Components (2019-2032)
- 11.5 North America GPU Database Market, by Deployment Model (2019-2032)
- 11.6 North America GPU Database Market, by Verticals (2019-2032)
- 11.7 North America GPU Database Market, by Country (2019-2032)
- 11.7.1 U.S.
- 11.7.2 Canada
- 11.7.3 Mexico
- 11.7.4 Rest of North America
- SECTION 12 - EUROPE GPU DATABASE MARKET
- 12.1 Europe Summary
- 12.2 Market Attractive Index
- 12.3 Europe GPU Database Market, by Application (2019-2032)
- 12.4 Europe GPU Database Market, by Components (2019-2032)
- 12.5 Europe GPU Database Market, by Deployment Model (2019-2032)
- 12.6 Europe GPU Database Market, by Verticals (2019-2032)
- 12.7 Europe GPU Database Market, by Country (2019-2032)
- 12.7.1 Germany
- 12.7.2 U.K.
- 12.7.3 France
- 12.7.4 Italy
- 12.7.5 Spain
- 12.7.6 Russia
- 12.7.7 The Netherlands
- 12.7.8 Belgium
- 12.7.9 Turkey
- 12.7.10 Rest of Europe
- SECTION 13 - ASIA-PACIFIC GPU DATABASE MARKET
- 13.1 Asia-Pacific Summary
- 13.2 Market Attractive Index
- 13.3 Asia-Pacific GPU Database Market, by Application (2019-2032)
- 13.4 Asia-Pacific GPU Database Market, by Components (2019-2032)
- 13.5 Asia-Pacific GPU Database Market, by Deployment Model (2019-2032)
- 13.6 Asia-Pacific GPU Database Market, by Verticals (2019-2032)
- 13.7 Asia-Pacific GPU Database Market, by Country (2019-2032)
- 13.7.1 China
- 13.7.2 India
- 13.7.3 Japan
- 13.7.4 South Korea
- 13.7.5 Singapore
- 13.7.6 Malaysia
- 13.7.7 Australia
- 13.7.8 Thailand
- 13.7.9 Philippines
- 13.7.10 Rest of Asia-Pacific
- SECTION 14 - SOUTH AMERICA GPU DATABASE MARKET
- 14.1 South America Summary
- 14.2 Market Attractive Index
- 14.3 South America GPU Database Market, by Application (2019-2032)
- 14.4 South America GPU Database Market, by Components (2019-2032)
- 14.5 South America GPU Database Market, by Deployment Model (2019-2032)
- 14.6 South America GPU Database Market, by Verticals (2019-2032)
- 14.7 South America GPU Database Market, by Country (2019-2032)
- 14.7.1 Brazil
- 14.7.2 Argentina
- 14.7.3 Chile
- 14.7.4 Colombia
- 14.7.5 Rest of South America
- SECTION 15 - MIDDLE EAST AND AFRICA GPU DATABASE MARKET
- 15.1 Middle East and Africa Summary
- 15.2 Market Attractive Index
- 15.3 Middle East and Africa GPU Database Market, by Application (2019-2032)
- 15.4 Middle East and Africa GPU Database Market, by Components (2019-2032)
- 15.5 Middle East and Africa GPU Database Market, by Deployment Model (2019-2032)
- 15.6 Middle East and Africa GPU Database Market, by Verticals (2019-2032)
- 15.7 Middle East and Africa GPU Database Market, by Country (2019-2032)
- 15.7.1 Kingdom of Saudi Arabia
- 15.7.2 South Africa
- 15.7.3 U.A.E.
- 15.7.4 Egypt
- 15.7.5 Rest of Middle East and Africa
- SECTION 16 - COMPANY SHARE ANALYSIS
- 16.1 Global GPU Database Market, Company Share Analysis
- 16.2 North America GPU Database Market, Company Share Analysis
- 16.3 Europe GPU Database Market, Company Share Analysis
- 16.4 Asia-Pacific GPU Database Market, Company Share Analysis
- SECTION 17 - COMPANY PROFILES
- 17.1 Kinetica
- 17.1.1 Company Snapshot
- 17.1.2 Financial Overview
- 17.1.3 Product Portfolio
- 17.1.4 Recent Developments
- 17.2 OmniSci
- 17.2.1 Company Snapshot
- 17.2.2 Financial Overview
- 17.2.3 Product Portfolio
- 17.2.4 Recent Developments
- 17.3 SQream
- 17.3.1 Company Snapshot
- 17.3.2 Financial Overview
- 17.3.3 Product Portfolio
- 17.3.4 Recent Developments
- 17.4 Neo4j
- 17.4.1 Company Snapshot
- 17.4.2 Financial Overview
- 17.4.3 Product Portfolio
- 17.4.4 Recent Developments
- 17.5 NVIDIA
- 17.5.1 Company Snapshot
- 17.5.2 Financial Overview
- 17.5.3 Product Portfolio
- 17.5.4 Recent Developments
- 17.6 Brytlyt
- 17.6.1 Company Snapshot
- 17.6.2 Financial Overview
- 17.6.3 Product Portfolio
- 17.6.4 Recent Developments
- 17.7 Jedox
- 17.7.1 Company Snapshot
- 17.7.2 Financial Overview
- 17.7.3 Product Portfolio
- 17.7.4 Recent Developments
- 17.8 Zilliz
- 17.8.1 Company Snapshot
- 17.8.2 Financial Overview
- 17.8.3 Product Portfolio
- 17.8.4 Recent Developments
- 17.9 HeteroDB
- 17.9.1 Company Snapshot
- 17.9.2 Financial Overview
- 17.9.3 Product Portfolio
- 17.9.4 Recent Developments
- 17.10 Graphistry
- 17.10.1 Company Snapshot
- 17.10.2 Financial Overview
- 17.10.3 Product Portfolio
- 17.10.4 Recent Developments
- SECTION 18 - RELATED REPORTS
- SECTION 19 - DISCLAIMER
RESEARCH METHODOLOGY
RESEARCH AND DATA COLLECTION
- Research articles published on Technium
- Science and MDPI
- Research publications by government approved associations and societies
DATA PRE-PROCESSING
The term "data pre-processing" refers to the collection of procedures and methods used to clean, modify, and make ready for analysis the raw data gathered during research and data collection. The completion of this phase is necessary to guarantee that the data are reliable, consistent, and appropriate for statistical analysis and other data-driven tasks. The data pre-processing ensures that the information gathered from research and data collection is comparable and expressed in standard units, by the integration of missing data pointers and algorithmic approaches.
MODELING AND FORECASTING
QUALITY ASSURANCE AND OUTPUT
Quality assurance and output involves the process of validation, adjustments, further publications of key market indicators. Extensive plausibility and consistency tests are performed on derived time series to ensure the high degree of quality of our market analysis. This quality assurance procedure also includes rigorous inspection, validation, and editing by an experienced management team to assure the dependability of the published data.