AGRICULTURE
Global AgTech Market - Industry Trends and Forecast to 2032
REPORT OVERVIEW
Global AgTech Market, By Application (Precision Agriculture, Livestock Monitoring and Management., Indoor Farming, Aquaculture, and Others), Region (North America, Europe, Asia-Pacific, South America, Middle East and Africa) – Industry Trends and Forecast to 2032.
Market Insights
Market Dynamics
- Population growth and food security
- Labor shortages and demographic changes
- High initial costs
- Technological complexity and integration
- Biotechnology and genetic innovation
- Climate-smart agriculture
- Data management and privacy concerns
- Resource scarcity
SEGMENTATION
- Application
- Precision Agriculture
- Livestock Monitoring and Management.
- Indoor Farming
- Aquaculture
- Others
- North America
- U.S.
- Canada
- Mexico
- Rest of North America
- Europe
- Germany
- U.K.
- France
- Italy
- Spain
- Russia
- The Netherlands
- Belgium
- Turkey
- Rest of Europe
- Asia-Pacific
- China
- India
- Japan
- South Korea
- Singapore
- Malaysia
- Australia
- Thailand
- Philippines
- Rest of Asia-Pacific
- South America
- Brazil
- Argentina
- Chile
- Colombia
- Rest of South America
- Middle East and Africa
- Kingdom of Saudi Arabia
- South Africa
- U.A.E.
- Egypt
- Rest of Middle East and Africa
KEY MARKET PLAYERS
- Cargill
- ADM
- Bayer
- AgroStar
- Topcon Agriculture
- DeLaval
- Trimble
- Apollo Agriculture
- Benson Hill
- Bowery Farming
Table OF CONTENTS
- SECTION 1 - INTRODUCTION
- 1.1 Taxonomy
- 1.2 Market Overview
- 1.3 Currency and Limitations
- 1.3.1 Currency
- 1.3.2 Limitations
- 1.4 Key Competitors
- SECTION 2 - RESEARCH METHODOLOGY
- 2.1 Research Approach
- 2.2 Data Collection and Validation
- 2.2.1 Secondary Research
- 2.2.2 Primary Research
- 2.3 Market Assessment
- 2.3.1 Market Size Estimation
- 2.3.2 Bottom-up Approach
- 2.3.3 Top-down Approach
- 2.3.4 Growth Forecast
- 2.4 Market Study Assumptions
- 2.5 Data Sources
- SECTION 3 - EXECUTIVE SUMMARY
- 3.1 Global AgTech Market, by Application
- 3.2 Global AgTech Market, by Geography
- 3.3 Market Position Grid
- SECTION 4 - PREMIUM INSIGHTS
- 4.1 Regulatory Framework
- 4.1.1 Standards
- 4.1.2 Regulatory Landscape
- 4.2 Value Chain Analysis
- 4.3 Supply Chain Analysis
- 4.4 COVID-19 Impact
- 4.5 Russia-Ukraine War Impact
- 4.6 PORTER's Five Force Analysis
- 4.7 PESTLE Analysis
- 4.8 SWOT Analysis
- 4.9 Go to Market Strategy
- 4.10 Opportunity Orbit
- 4.11 Multivariate Modelling
- 4.12 Pricing Analysis
- SECTION 5 - MARKET DYNAMICS
- 5.1 Trends
- 5.1.1 Adoption of IoT and sensors in agriculture
- 5.1.2 Urban agriculture
- 5.1.3 Trend 3
- 5.2 Drivers
- 5.2.1 Population growth and food security
- 5.2.2 Labor shortages and demographic changes
- 5.2.3 Driver 3
- 5.2.4 Driver 4
- 5.3 Restraints
- 5.3.1 High initial costs
- 5.3.2 Technological complexity and integration
- 5.3.3 Restraint 3
- 5.4 Opportunities
- 5.4.1 Biotechnology and genetic innovation
- 5.4.2 Climate-smart agriculture
- 5.4.3 Opportunity 3
- 5.4.4 Opportunity 4
- 5.5 Challenges
- 5.5.1 Data management and privacy concerns
- 5.5.2 Resource scarcity
- 5.5.3 Challenge 3
- SECTION 6 - GLOBAL AGTECH MARKET, BY APPLICATION
- 6.1 Application Summary
- 6.2 Market Attractive Index
- 6.3 Global AgTech Market, by Application (2019-2032)
- SECTION 7 - GLOBAL AGTECH MARKET, BY GEOGRAPHY
- 7.1 Regional Summary
- 7.2 Market Attractive Index
- 7.3 Global AgTech Market, by Geography (2019-2032)
- SECTION 8 - NORTH AMERICA AGTECH MARKET
- 8.1 North America Summary
- 8.2 Market Attractive Index
- 8.3 North America AgTech Market, by Application (2019-2032)
- 8.4 North America AgTech Market, by Country (2019-2032)
- 8.4.1 U.S.
- 8.4.2 Canada
- 8.4.3 Mexico
- 8.4.4 Rest of North America
- SECTION 9 - EUROPE AGTECH MARKET
- 9.1 Europe Summary
- 9.2 Market Attractive Index
- 9.3 Europe AgTech Market, by Application (2019-2032)
- 9.4 Europe AgTech Market, by Country (2019-2032)
- 9.4.1 Germany
- 9.4.2 U.K.
- 9.4.3 France
- 9.4.4 Italy
- 9.4.5 Spain
- 9.4.6 Russia
- 9.4.7 The Netherlands
- 9.4.8 Belgium
- 9.4.9 Turkey
- 9.4.10 Rest of Europe
- SECTION 10 - ASIA-PACIFIC AGTECH MARKET
- 10.1 Asia-Pacific Summary
- 10.2 Market Attractive Index
- 10.3 Asia-Pacific AgTech Market, by Application (2019-2032)
- 10.4 Asia-Pacific AgTech Market, by Country (2019-2032)
- 10.4.1 China
- 10.4.2 India
- 10.4.3 Japan
- 10.4.4 South Korea
- 10.4.5 Singapore
- 10.4.6 Malaysia
- 10.4.7 Australia
- 10.4.8 Thailand
- 10.4.9 Philippines
- 10.4.10 Rest of Asia-Pacific
- SECTION 11 - SOUTH AMERICA AGTECH MARKET
- 11.1 South America Summary
- 11.2 Market Attractive Index
- 11.3 South America AgTech Market, by Application (2019-2032)
- 11.4 South America AgTech Market, by Country (2019-2032)
- 11.4.1 Brazil
- 11.4.2 Argentina
- 11.4.3 Chile
- 11.4.4 Colombia
- 11.4.5 Rest of South America
- SECTION 12 - MIDDLE EAST AND AFRICA AGTECH MARKET
- 12.1 Middle East and Africa Summary
- 12.2 Market Attractive Index
- 12.3 Middle East and Africa AgTech Market, by Application (2019-2032)
- 12.4 Middle East and Africa AgTech Market, by Country (2019-2032)
- 12.4.1 Kingdom of Saudi Arabia
- 12.4.2 South Africa
- 12.4.3 U.A.E.
- 12.4.4 Egypt
- 12.4.5 Rest of Middle East and Africa
- SECTION 13 - COMPANY SHARE ANALYSIS
- 13.1 Global AgTech Market, Company Share Analysis
- 13.2 North America AgTech Market, Company Share Analysis
- 13.3 Europe AgTech Market, Company Share Analysis
- 13.4 Asia-Pacific AgTech Market, Company Share Analysis
- SECTION 14 - COMPANY PROFILES
- 14.1 Cargill
- 14.1.1 Company Snapshot
- 14.1.2 Financial Overview
- 14.1.3 Product Portfolio
- 14.1.4 Recent Developments
- 14.2 ADM
- 14.2.1 Company Snapshot
- 14.2.2 Financial Overview
- 14.2.3 Product Portfolio
- 14.2.4 Recent Developments
- 14.3 Bayer
- 14.3.1 Company Snapshot
- 14.3.2 Financial Overview
- 14.3.3 Product Portfolio
- 14.3.4 Recent Developments
- 14.4 AgroStar
- 14.4.1 Company Snapshot
- 14.4.2 Financial Overview
- 14.4.3 Product Portfolio
- 14.4.4 Recent Developments
- 14.5 Topcon Agriculture
- 14.5.1 Company Snapshot
- 14.5.2 Financial Overview
- 14.5.3 Product Portfolio
- 14.5.4 Recent Developments
- 14.6 DeLaval
- 14.6.1 Company Snapshot
- 14.6.2 Financial Overview
- 14.6.3 Product Portfolio
- 14.6.4 Recent Developments
- 14.7 Trimble
- 14.7.1 Company Snapshot
- 14.7.2 Financial Overview
- 14.7.3 Product Portfolio
- 14.7.4 Recent Developments
- 14.8 Apollo Agriculture
- 14.8.1 Company Snapshot
- 14.8.2 Financial Overview
- 14.8.3 Product Portfolio
- 14.8.4 Recent Developments
- 14.9 Benson Hill
- 14.9.1 Company Snapshot
- 14.9.2 Financial Overview
- 14.9.3 Product Portfolio
- 14.9.4 Recent Developments
- 14.10 Bowery Farming
- 14.10.1 Company Snapshot
- 14.10.2 Financial Overview
- 14.10.3 Product Portfolio
- 14.10.4 Recent Developments
- SECTION 15 - RELATED REPORTS
- SECTION 16 - DISCLAIMER
RESEARCH METHODOLOGY
RESEARCH AND DATA COLLECTION
- Research articles published on Technium
- Science and MDPI
- Research publications by government approved associations and societies
DATA PRE-PROCESSING
The term "data pre-processing" refers to the collection of procedures and methods used to clean, modify, and make ready for analysis the raw data gathered during research and data collection. The completion of this phase is necessary to guarantee that the data are reliable, consistent, and appropriate for statistical analysis and other data-driven tasks. The data pre-processing ensures that the information gathered from research and data collection is comparable and expressed in standard units, by the integration of missing data pointers and algorithmic approaches.
MODELING AND FORECASTING
QUALITY ASSURANCE AND OUTPUT
Quality assurance and output involves the process of validation, adjustments, further publications of key market indicators. Extensive plausibility and consistency tests are performed on derived time series to ensure the high degree of quality of our market analysis. This quality assurance procedure also includes rigorous inspection, validation, and editing by an experienced management team to assure the dependability of the published data.