INFORMATION & COMMUNICATION TECHNOLOGY
Global AI Model Risk Management Market - Industry Trends and Forecast to 2032
REPORT OVERVIEW
Global AI Model Risk Management Market, By Offering (Software and Services), Risk Type (Security Risk, Ethical Risk, and Operational Risk), Application (Fraud Detection and Risk Reduction, Data Classification and Labelling, Sentiment Analysis, Model Inventory Management, Customer Segmentation and Targeting, Regulatory Compliance Monitoring, and Others), Vertical (BFSI, Retail and eCommerce, Telecom, Manufacturing, Healthcare and Life Sciences, Media and Entertainment, IT/ITeS, Government and Public Sector, and Others), Region (North America, Europe, Asia-Pacific, South America, Middle East and Africa) – Industry Trends and Forecast to 2032.
Market Insights
Market Dynamics
- Increasing adoption of AI technologies
- Demand for comprehensive risk management solutions
- Lack of standardization
- Complexity and opacity of AI models
- Cross-industry collaboration and knowledge sharing
- Talent development and skill enhancement
- Rapid evolution of technologies
- Cybersecurity risks
SEGMENTATION
- Offering
- Software
- Type
- Model Management
- Monitoring and Performance
- Testing and Validation
- Governance and Compliance
- Automated Retraining and Deployment
- Collaborative Development
- Bias Detection and Fairness Tools
- Explainable AI Tools
- Risk Scoring and Stress Testing Tools
- Security and Privacy Management Tools
- Deployment
- Cloud
- On-Premises
- Services
- Professional Services
- Consulting and Advisory
- Integration and Deployment
- Support and Maintenance
- Training and Education
- Managed Services
- Risk Type
- Security Risk
- Ethical Risk
- Operational Risk
- Application
- Fraud Detection and Risk Reduction
- Data Classification and Labelling
- Sentiment Analysis
- Model Inventory Management
- Customer Segmentation and Targeting
- Regulatory Compliance Monitoring
- Others
- Vertical
- BFSI
- Credit Risk Assessment
- Algorithmic Trading
- Anti-Money Laundering Monitoring
- Market Risk Analysis
- Loan Default Prediction
- Others
- Retail and eCommerce
- Demand and Sales Forecasting
- Customer Churn Prediction
- Personalized Recommendations
- Return and Refund Risk Management
- Customer Lifetime Value Prediction
- Others
- Telecom
- Network Performance Monitoring
- Customer Experience Management
- Usage Pattern Analysis
- Service Reliability Prediction
- Revenue Assurance
- Others
- Manufacturing
- Predictive Maintenance
- Quality Control
- Production Line Risk Management
- Lean Manufacturing Optimization
- Others
- Healthcare and Life Sciences
- Patient Risk Stratification
- Predictive Diagnostics
- Clinical Trial Optimization
- Drug Safety Monitoring
- Healthcare Cost Management
- Others
- Media and Entertainment
- Audience Segmentation
- Content Recommendation Systems
- Ad Targeting Optimization
- Engagement Analytics
- Content Demand Forecasting
- Others
- IT/ITeS
- IT Infrastructure Risk Management
- Data Privacy Compliance Prediction
- Incident Response Optimization
- Service Level Agreement Compliance Prediction
- System Downtime Prediction
- Project Risk Management
- Others
- Government and Public Sector
- Public Health Surveillance
- Disaster Response Planning
- Crime Prediction and Prevention
- Incident Response Optimization
- Tax Fraud Detection
- Social Services Eligibility Verification
- Others
- Others
- North America
- U.S.
- Canada
- Mexico
- Rest of North America
- Europe
- Germany
- U.K.
- France
- Italy
- Spain
- Russia
- The Netherlands
- Belgium
- Turkey
- Rest of Europe
- Asia-Pacific
- China
- India
- Japan
- South Korea
- Singapore
- Malaysia
- Australia
- Thailand
- Philippines
- Rest of Asia-Pacific
- South America
- Brazil
- Argentina
- Chile
- Colombia
- Rest of South America
- Middle East and Africa
- Kingdom of Saudi Arabia
- South Africa
- U.A.E.
- Egypt
- Rest of Middle East and Africa
KEY MARKET PLAYERS
- Microsoft
- IBM
- SAS Institute
- Empowered Systems
- Armilla AI
- Krista
- UpGuard
- C3 AI
- DataBricks
- AuditBoard
Table OF CONTENTS
- SECTION 1 - INTRODUCTION
- 1.1 Taxonomy
- 1.2 Market Overview
- 1.3 Currency and Limitations
- 1.3.1 Currency
- 1.3.2 Limitations
- 1.4 Key Competitors
- SECTION 2 - RESEARCH METHODOLOGY
- 2.1 Research Approach
- 2.2 Data Collection and Validation
- 2.2.1 Secondary Research
- 2.2.2 Primary Research
- 2.3 Market Assessment
- 2.3.1 Market Size Estimation
- 2.3.2 Bottom-up Approach
- 2.3.3 Top-down Approach
- 2.3.4 Growth Forecast
- 2.4 Market Study Assumptions
- 2.5 Data Sources
- SECTION 3 - EXECUTIVE SUMMARY
- 3.1 Global AI Model Risk Management Market, by Offering
- 3.2 Global AI Model Risk Management Market, by Risk Type
- 3.3 Global AI Model Risk Management Market, by Application
- 3.4 Global AI Model Risk Management Market, by Vertical
- 3.5 Global AI Model Risk Management Market, by Geography
- 3.6 Market Position Grid
- SECTION 4 - PREMIUM INSIGHTS
- 4.1 Regulatory Framework
- 4.1.1 Standards
- 4.1.2 Regulatory Landscape
- 4.2 Value Chain Analysis
- 4.3 Supply Chain Analysis
- 4.4 COVID-19 Impact
- 4.5 Russia-Ukraine War Impact
- 4.6 PORTER's Five Force Analysis
- 4.7 PESTLE Analysis
- 4.8 SWOT Analysis
- 4.9 Go to Market Strategy
- 4.10 Opportunity Orbit
- 4.11 Multivariate Modelling
- 4.12 Pricing Analysis
- SECTION 5 - MARKET DYNAMICS
- 5.1 Trends
- 5.1.1 Regulatory scrutiny and compliance requirements
- 5.1.2 Awareness of bias and fairness
- 5.1.3 Trend 3
- 5.2 Drivers
- 5.2.1 Increasing adoption of AI technologies
- 5.2.2 Demand for comprehensive risk management solutions
- 5.2.3 Driver 3
- 5.2.4 Driver 4
- 5.3 Restraints
- 5.3.1 Lack of standardization
- 5.3.2 Complexity and opacity of AI models
- 5.3.3 Restraint 3
- 5.4 Opportunities
- 5.4.1 Cross-industry collaboration and knowledge sharing
- 5.4.2 Talent development and skill enhancement
- 5.4.3 Opportunity 3
- 5.4.4 Opportunity 4
- 5.5 Challenges
- 5.5.1 Rapid evolution of technologies
- 5.5.2 Cybersecurity risks
- 5.5.3 Challenge 3
- SECTION 6 - GLOBAL AI MODEL RISK MANAGEMENT MARKET, BY OFFERING
- 6.1 Offering Summary
- 6.2 Market Attractive Index
- 6.3 Global AI Model Risk Management Market, by Offering (2019-2032)
- SECTION 7 - GLOBAL AI MODEL RISK MANAGEMENT MARKET, BY RISK TYPE
- 7.1 Risk Type Summary
- 7.2 Market Attractive Index
- 7.3 Global AI Model Risk Management Market, by Risk Type (2019-2032)
- SECTION 8 - GLOBAL AI MODEL RISK MANAGEMENT MARKET, BY APPLICATION
- 8.1 Application Summary
- 8.2 Market Attractive Index
- 8.3 Global AI Model Risk Management Market, by Application (2019-2032)
- SECTION 9 - GLOBAL AI MODEL RISK MANAGEMENT MARKET, BY VERTICAL
- 9.1 Vertical Summary
- 9.2 Market Attractive Index
- 9.3 Global AI Model Risk Management Market, by Vertical (2019-2032)
- SECTION 10 - GLOBAL AI MODEL RISK MANAGEMENT MARKET, BY GEOGRAPHY
- 10.1 Regional Summary
- 10.2 Market Attractive Index
- 10.3 Global AI Model Risk Management Market, by Geography (2019-2032)
- SECTION 11 - NORTH AMERICA AI MODEL RISK MANAGEMENT MARKET
- 11.1 North America Summary
- 11.2 Market Attractive Index
- 11.3 North America AI Model Risk Management Market, by Offering (2019-2032)
- 11.4 North America AI Model Risk Management Market, by Risk Type (2019-2032)
- 11.5 North America AI Model Risk Management Market, by Application (2019-2032)
- 11.6 North America AI Model Risk Management Market, by Vertical (2019-2032)
- 11.7 North America AI Model Risk Management Market, by Country (2019-2032)
- 11.7.1 U.S.
- 11.7.2 Canada
- 11.7.3 Mexico
- 11.7.4 Rest of North America
- SECTION 12 - EUROPE AI MODEL RISK MANAGEMENT MARKET
- 12.1 Europe Summary
- 12.2 Market Attractive Index
- 12.3 Europe AI Model Risk Management Market, by Offering (2019-2032)
- 12.4 Europe AI Model Risk Management Market, by Risk Type (2019-2032)
- 12.5 Europe AI Model Risk Management Market, by Application (2019-2032)
- 12.6 Europe AI Model Risk Management Market, by Vertical (2019-2032)
- 12.7 Europe AI Model Risk Management Market, by Country (2019-2032)
- 12.7.1 Germany
- 12.7.2 U.K.
- 12.7.3 France
- 12.7.4 Italy
- 12.7.5 Spain
- 12.7.6 Russia
- 12.7.7 The Netherlands
- 12.7.8 Belgium
- 12.7.9 Turkey
- 12.7.10 Rest of Europe
- SECTION 13 - ASIA-PACIFIC AI MODEL RISK MANAGEMENT MARKET
- 13.1 Asia-Pacific Summary
- 13.2 Market Attractive Index
- 13.3 Asia-Pacific AI Model Risk Management Market, by Offering (2019-2032)
- 13.4 Asia-Pacific AI Model Risk Management Market, by Risk Type (2019-2032)
- 13.5 Asia-Pacific AI Model Risk Management Market, by Application (2019-2032)
- 13.6 Asia-Pacific AI Model Risk Management Market, by Vertical (2019-2032)
- 13.7 Asia-Pacific AI Model Risk Management Market, by Country (2019-2032)
- 13.7.1 China
- 13.7.2 India
- 13.7.3 Japan
- 13.7.4 South Korea
- 13.7.5 Singapore
- 13.7.6 Malaysia
- 13.7.7 Australia
- 13.7.8 Thailand
- 13.7.9 Philippines
- 13.7.10 Rest of Asia-Pacific
- SECTION 14 - SOUTH AMERICA AI MODEL RISK MANAGEMENT MARKET
- 14.1 South America Summary
- 14.2 Market Attractive Index
- 14.3 South America AI Model Risk Management Market, by Offering (2019-2032)
- 14.4 South America AI Model Risk Management Market, by Risk Type (2019-2032)
- 14.5 South America AI Model Risk Management Market, by Application (2019-2032)
- 14.6 South America AI Model Risk Management Market, by Vertical (2019-2032)
- 14.7 South America AI Model Risk Management Market, by Country (2019-2032)
- 14.7.1 Brazil
- 14.7.2 Argentina
- 14.7.3 Chile
- 14.7.4 Colombia
- 14.7.5 Rest of South America
- SECTION 15 - MIDDLE EAST AND AFRICA AI MODEL RISK MANAGEMENT MARKET
- 15.1 Middle East and Africa Summary
- 15.2 Market Attractive Index
- 15.3 Middle East and Africa AI Model Risk Management Market, by Offering (2019-2032)
- 15.4 Middle East and Africa AI Model Risk Management Market, by Risk Type (2019-2032)
- 15.5 Middle East and Africa AI Model Risk Management Market, by Application (2019-2032)
- 15.6 Middle East and Africa AI Model Risk Management Market, by Vertical (2019-2032)
- 15.7 Middle East and Africa AI Model Risk Management Market, by Country (2019-2032)
- 15.7.1 Kingdom of Saudi Arabia
- 15.7.2 South Africa
- 15.7.3 U.A.E.
- 15.7.4 Egypt
- 15.7.5 Rest of Middle East and Africa
- SECTION 16 - COMPANY SHARE ANALYSIS
- 16.1 Global AI Model Risk Management Market, Company Share Analysis
- 16.2 North America AI Model Risk Management Market, Company Share Analysis
- 16.3 Europe AI Model Risk Management Market, Company Share Analysis
- 16.4 Asia-Pacific AI Model Risk Management Market, Company Share Analysis
- SECTION 17 - COMPANY PROFILES
- 17.1 Microsoft
- 17.1.1 Company Snapshot
- 17.1.2 Financial Overview
- 17.1.3 Product Portfolio
- 17.1.4 Recent Developments
- 17.2 IBM
- 17.2.1 Company Snapshot
- 17.2.2 Financial Overview
- 17.2.3 Product Portfolio
- 17.2.4 Recent Developments
- 17.3 SAS Institute
- 17.3.1 Company Snapshot
- 17.3.2 Financial Overview
- 17.3.3 Product Portfolio
- 17.3.4 Recent Developments
- 17.4 Empowered Systems
- 17.4.1 Company Snapshot
- 17.4.2 Financial Overview
- 17.4.3 Product Portfolio
- 17.4.4 Recent Developments
- 17.5 Armilla AI
- 17.5.1 Company Snapshot
- 17.5.2 Financial Overview
- 17.5.3 Product Portfolio
- 17.5.4 Recent Developments
- 17.6 Krista
- 17.6.1 Company Snapshot
- 17.6.2 Financial Overview
- 17.6.3 Product Portfolio
- 17.6.4 Recent Developments
- 17.7 UpGuard
- 17.7.1 Company Snapshot
- 17.7.2 Financial Overview
- 17.7.3 Product Portfolio
- 17.7.4 Recent Developments
- 17.8 C3 AI
- 17.8.1 Company Snapshot
- 17.8.2 Financial Overview
- 17.8.3 Product Portfolio
- 17.8.4 Recent Developments
- 17.9 DataBricks
- 17.9.1 Company Snapshot
- 17.9.2 Financial Overview
- 17.9.3 Product Portfolio
- 17.9.4 Recent Developments
- 17.10 AuditBoard
- 17.10.1 Company Snapshot
- 17.10.2 Financial Overview
- 17.10.3 Product Portfolio
- 17.10.4 Recent Developments
- SECTION 18 - RELATED REPORTS
- SECTION 19 - DISCLAIMER
RESEARCH METHODOLOGY
RESEARCH AND DATA COLLECTION
- Research articles published on Technium
- Science and MDPI
- Research publications by government approved associations and societies
DATA PRE-PROCESSING
The term "data pre-processing" refers to the collection of procedures and methods used to clean, modify, and make ready for analysis the raw data gathered during research and data collection. The completion of this phase is necessary to guarantee that the data are reliable, consistent, and appropriate for statistical analysis and other data-driven tasks. The data pre-processing ensures that the information gathered from research and data collection is comparable and expressed in standard units, by the integration of missing data pointers and algorithmic approaches.
MODELING AND FORECASTING
QUALITY ASSURANCE AND OUTPUT
Quality assurance and output involves the process of validation, adjustments, further publications of key market indicators. Extensive plausibility and consistency tests are performed on derived time series to ensure the high degree of quality of our market analysis. This quality assurance procedure also includes rigorous inspection, validation, and editing by an experienced management team to assure the dependability of the published data.