AUTOMOTIVE & TRANSPORTATION
Global Automotive IoT Market - Industry Trends and Forecast to 2032
REPORT OVERVIEW
Global Automotive IoT Market, By Type (Hardware, Software, Services), Connectivity Form (Embedded, Tethered, Integrated), Application (Navigation, Telematics, Infotainment, Other), End-User (OEM, Aftermarket), Region (North America, Europe, Asia-Pacific, South America, Middle East and Africa) – Industry Trends and Forecast to 2032.
Market Insights
Market Dynamics
- Increasing adoption of connected vehicles and smart transportation systems.
- Rising consumer demand for enhanced safety and convenience features.
- High implementation and maintenance costs of IoT systems.
- Data security and privacy concerns related to vehicle data.
- Expansion into emerging markets with growing automotive industries.
- Advancements in IoT technology enable more sophisticated and scalable solutions.
- Ensuring interoperability among different IoT devices and platforms.
- Managing large volumes of data generated by connected vehicles.
SEGMENTATION
- Type
- Hardware
- Software
- Services
- Connectivity Form
- Embedded
- Tethered
- Integrated
- Application
- Navigation
- Telematics
- Infotainment
- Other
- End-User
- OEM
- Aftermarket
- North America
- U.S.
- Canada
- Mexico
- Rest of North America
- Europe
- Germany
- U.K.
- France
- Italy
- Spain
- Russia
- The Netherlands
- Belgium
- Turkey
- Rest of Europe
- Asia-Pacific
- China
- India
- Japan
- South Korea
- Singapore
- Malaysia
- Australia
- Thailand
- Philippines
- Rest of Asia-Pacific
- South America
- Brazil
- Argentina
- Chile
- Colombia
- Rest of South America
- Middle East and Africa
- Kingdom of Saudi Arabia
- South Africa
- U.A.E.
- Egypt
- Rest of Middle East and Africa
KEY MARKET PLAYERS
- NXP Semiconductors N.V.
- HARMAN International Industries, Inc.
- Robert Bosch GmbH
- Thales S.A.
- IBM Corporation
- Texas Instruments Incorporated
- Microsoft Corporation
- Intel Corporation
- Verizon Communications Inc.
- QUALCOMM Incorporated
Table OF CONTENTS
- SECTION 1 - INTRODUCTION
- 1.1 Taxonomy
- 1.2 Market Overview
- 1.3 Currency and Limitations
- 1.3.1 Currency
- 1.3.2 Limitations
- 1.4 Key Competitors
- SECTION 2 - RESEARCH METHODOLOGY
- 2.1 Research Approach
- 2.2 Data Collection and Validation
- 2.2.1 Secondary Research
- 2.2.2 Primary Research
- 2.3 Market Assessment
- 2.3.1 Market Size Estimation
- 2.3.2 Bottom-up Approach
- 2.3.3 Top-down Approach
- 2.3.4 Growth Forecast
- 2.4 Market Study Assumptions
- 2.5 Data Sources
- SECTION 3 - EXECUTIVE SUMMARY
- 3.1 Global Automotive IoT Market, by Type
- 3.2 Global Automotive IoT Market, by Connectivity Form
- 3.3 Global Automotive IoT Market, by Application
- 3.4 Global Automotive IoT Market, by End-User
- 3.5 Global Automotive IoT Market, by Geography
- 3.6 Market Position Grid
- SECTION 4 - PREMIUM INSIGHTS
- 4.1 Regulatory Framework
- 4.1.1 Standards
- 4.1.2 Regulatory Landscape
- 4.2 Value Chain Analysis
- 4.3 Supply Chain Analysis
- 4.4 COVID-19 Impact
- 4.5 Russia-Ukraine War Impact
- 4.6 PORTER's Five Force Analysis
- 4.7 PESTLE Analysis
- 4.8 SWOT Analysis
- 4.9 Go to Market Strategy
- 4.10 Opportunity Orbit
- 4.11 Multivariate Modelling
- 4.12 Pricing Analysis
- SECTION 5 - MARKET DYNAMICS
- 5.1 Trends
- 5.1.1 Integration of AI and machine learning for predictive maintenance and enhanced vehicle performance.
- 5.1.2 Advancements in sensor technology and telematics systems.
- 5.1.3 Trend 3
- 5.2 Drivers
- 5.2.1 Increasing adoption of connected vehicles and smart transportation systems.
- 5.2.2 Rising consumer demand for enhanced safety and convenience features.
- 5.2.3 Driver 3
- 5.2.4 Driver 4
- 5.3 Restraints
- 5.3.1 High implementation and maintenance costs of IoT systems.
- 5.3.2 Data security and privacy concerns related to vehicle data.
- 5.3.3 Restraint 3
- 5.4 Opportunities
- 5.4.1 Expansion into emerging markets with growing automotive industries.
- 5.4.2 Advancements in IoT technology enable more sophisticated and scalable solutions.
- 5.4.3 Opportunity 3
- 5.4.4 Opportunity 4
- 5.5 Challenges
- 5.5.1 Ensuring interoperability among different IoT devices and platforms.
- 5.5.2 Managing large volumes of data generated by connected vehicles.
- 5.5.3 Challenge 3
- SECTION 6 - GLOBAL AUTOMOTIVE IOT MARKET, BY TYPE
- 6.1 Type Summary
- 6.2 Market Attractive Index
- 6.3 Global Automotive IoT Market, by Type (2019-2032)
- SECTION 7 - GLOBAL AUTOMOTIVE IOT MARKET, BY CONNECTIVITY FORM
- 7.1 Connectivity Form Summary
- 7.2 Market Attractive Index
- 7.3 Global Automotive IoT Market, by Connectivity Form (2019-2032)
- SECTION 8 - GLOBAL AUTOMOTIVE IOT MARKET, BY APPLICATION
- 8.1 Application Summary
- 8.2 Market Attractive Index
- 8.3 Global Automotive IoT Market, by Application (2019-2032)
- SECTION 9 - GLOBAL AUTOMOTIVE IOT MARKET, BY END-USER
- 9.1 End-User Summary
- 9.2 Market Attractive Index
- 9.3 Global Automotive IoT Market, by End-User (2019-2032)
- SECTION 10 - GLOBAL AUTOMOTIVE IOT MARKET, BY GEOGRAPHY
- 10.1 Regional Summary
- 10.2 Market Attractive Index
- 10.3 Global Automotive IoT Market, by Geography (2019-2032)
- SECTION 11 - NORTH AMERICA AUTOMOTIVE IOT MARKET
- 11.1 North America Summary
- 11.2 Market Attractive Index
- 11.3 North America Automotive IoT Market, by Type (2019-2032)
- 11.4 North America Automotive IoT Market, by Connectivity Form (2019-2032)
- 11.5 North America Automotive IoT Market, by Application (2019-2032)
- 11.6 North America Automotive IoT Market, by End-User (2019-2032)
- 11.7 North America Automotive IoT Market, by Country (2019-2032)
- 11.7.1 U.S.
- 11.7.2 Canada
- 11.7.3 Mexico
- 11.7.4 Rest of North America
- SECTION 12 - EUROPE AUTOMOTIVE IOT MARKET
- 12.1 Europe Summary
- 12.2 Market Attractive Index
- 12.3 Europe Automotive IoT Market, by Type (2019-2032)
- 12.4 Europe Automotive IoT Market, by Connectivity Form (2019-2032)
- 12.5 Europe Automotive IoT Market, by Application (2019-2032)
- 12.6 Europe Automotive IoT Market, by End-User (2019-2032)
- 12.7 Europe Automotive IoT Market, by Country (2019-2032)
- 12.7.1 Germany
- 12.7.2 U.K.
- 12.7.3 France
- 12.7.4 Italy
- 12.7.5 Spain
- 12.7.6 Russia
- 12.7.7 The Netherlands
- 12.7.8 Belgium
- 12.7.9 Turkey
- 12.7.10 Rest of Europe
- SECTION 13 - ASIA-PACIFIC AUTOMOTIVE IOT MARKET
- 13.1 Asia-Pacific Summary
- 13.2 Market Attractive Index
- 13.3 Asia-Pacific Automotive IoT Market, by Type (2019-2032)
- 13.4 Asia-Pacific Automotive IoT Market, by Connectivity Form (2019-2032)
- 13.5 Asia-Pacific Automotive IoT Market, by Application (2019-2032)
- 13.6 Asia-Pacific Automotive IoT Market, by End-User (2019-2032)
- 13.7 Asia-Pacific Automotive IoT Market, by Country (2019-2032)
- 13.7.1 China
- 13.7.2 India
- 13.7.3 Japan
- 13.7.4 South Korea
- 13.7.5 Singapore
- 13.7.6 Malaysia
- 13.7.7 Australia
- 13.7.8 Thailand
- 13.7.9 Philippines
- 13.7.10 Rest of Asia-Pacific
- SECTION 14 - SOUTH AMERICA AUTOMOTIVE IOT MARKET
- 14.1 South America Summary
- 14.2 Market Attractive Index
- 14.3 South America Automotive IoT Market, by Type (2019-2032)
- 14.4 South America Automotive IoT Market, by Connectivity Form (2019-2032)
- 14.5 South America Automotive IoT Market, by Application (2019-2032)
- 14.6 South America Automotive IoT Market, by End-User (2019-2032)
- 14.7 South America Automotive IoT Market, by Country (2019-2032)
- 14.7.1 Brazil
- 14.7.2 Argentina
- 14.7.3 Chile
- 14.7.4 Colombia
- 14.7.5 Rest of South America
- SECTION 15 - MIDDLE EAST AND AFRICA AUTOMOTIVE IOT MARKET
- 15.1 Middle East and Africa Summary
- 15.2 Market Attractive Index
- 15.3 Middle East and Africa Automotive IoT Market, by Type (2019-2032)
- 15.4 Middle East and Africa Automotive IoT Market, by Connectivity Form (2019-2032)
- 15.5 Middle East and Africa Automotive IoT Market, by Application (2019-2032)
- 15.6 Middle East and Africa Automotive IoT Market, by End-User (2019-2032)
- 15.7 Middle East and Africa Automotive IoT Market, by Country (2019-2032)
- 15.7.1 Kingdom of Saudi Arabia
- 15.7.2 South Africa
- 15.7.3 U.A.E.
- 15.7.4 Egypt
- 15.7.5 Rest of Middle East and Africa
- SECTION 16 - COMPANY SHARE ANALYSIS
- 16.1 Global Automotive IoT Market, Company Share Analysis
- 16.2 North America Automotive IoT Market, Company Share Analysis
- 16.3 Europe Automotive IoT Market, Company Share Analysis
- 16.4 Asia-Pacific Automotive IoT Market, Company Share Analysis
- SECTION 17 - COMPANY PROFILES
- 17.1 NXP Semiconductors N.V.
- 17.1.1 Company Snapshot
- 17.1.2 Financial Overview
- 17.1.3 Product Portfolio
- 17.1.4 Recent Developments
- 17.2 HARMAN International Industries, Inc.
- 17.2.1 Company Snapshot
- 17.2.2 Financial Overview
- 17.2.3 Product Portfolio
- 17.2.4 Recent Developments
- 17.3 Robert Bosch GmbH
- 17.3.1 Company Snapshot
- 17.3.2 Financial Overview
- 17.3.3 Product Portfolio
- 17.3.4 Recent Developments
- 17.4 Thales S.A.
- 17.4.1 Company Snapshot
- 17.4.2 Financial Overview
- 17.4.3 Product Portfolio
- 17.4.4 Recent Developments
- 17.5 IBM Corporation
- 17.5.1 Company Snapshot
- 17.5.2 Financial Overview
- 17.5.3 Product Portfolio
- 17.5.4 Recent Developments
- 17.6 Texas Instruments Incorporated
- 17.6.1 Company Snapshot
- 17.6.2 Financial Overview
- 17.6.3 Product Portfolio
- 17.6.4 Recent Developments
- 17.7 Microsoft Corporation
- 17.7.1 Company Snapshot
- 17.7.2 Financial Overview
- 17.7.3 Product Portfolio
- 17.7.4 Recent Developments
- 17.8 Intel Corporation
- 17.8.1 Company Snapshot
- 17.8.2 Financial Overview
- 17.8.3 Product Portfolio
- 17.8.4 Recent Developments
- 17.9 Verizon Communications Inc.
- 17.9.1 Company Snapshot
- 17.9.2 Financial Overview
- 17.9.3 Product Portfolio
- 17.9.4 Recent Developments
- 17.10 QUALCOMM Incorporated
- 17.10.1 Company Snapshot
- 17.10.2 Financial Overview
- 17.10.3 Product Portfolio
- 17.10.4 Recent Developments
- SECTION 18 - RELATED REPORTS
- SECTION 19 - DISCLAIMER
RESEARCH METHODOLOGY
RESEARCH AND DATA COLLECTION
- Research articles published on Technium
- Science and MDPI
- Research publications by government approved associations and societies
DATA PRE-PROCESSING
The term "data pre-processing" refers to the collection of procedures and methods used to clean, modify, and make ready for analysis the raw data gathered during research and data collection. The completion of this phase is necessary to guarantee that the data are reliable, consistent, and appropriate for statistical analysis and other data-driven tasks. The data pre-processing ensures that the information gathered from research and data collection is comparable and expressed in standard units, by the integration of missing data pointers and algorithmic approaches.
MODELING AND FORECASTING
QUALITY ASSURANCE AND OUTPUT
Quality assurance and output involves the process of validation, adjustments, further publications of key market indicators. Extensive plausibility and consistency tests are performed on derived time series to ensure the high degree of quality of our market analysis. This quality assurance procedure also includes rigorous inspection, validation, and editing by an experienced management team to assure the dependability of the published data.